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Introduction
The worldwide agricultural industry will undergo substantial changes in the next few years. The 
protection of the environment and the fight against species extinction will lead to new technologies, 
stringent laws, and more sustainability in our work processes and human behavior. At the same time, 
we expect an increase in the worldwide human population of up to 11 billion by 2100, with most 
people living in cities.

One answer to the challenge of the resulting higher food production needs, while minimizing the 
environmental footprint in arable farming, is the concept of variable rate applications. A detailed 
understanding of the growth state, stress factors, diseases and pests for parts of a field or even 
individual crops will allow specific and “smart” applications of water, fertilizers, and pesticides 
according to the actual needs (see [8]).

In this paper, we outline the state of the art process of variable rate applications. We give an outlook 
into the future of multispectral and hyperspectral sensing technology in arable farming and how 
this technology can contribute valuable information for crop analytics in plant protection and crop 
production processes.

Foundations
When electromagnetic radiation emitted by the Sun hits Earth’s surface, a part of the radiation is 
reflected, and another part absorbed. Since reflectivity is a material property, the spectrally resolved 
reflection forms a “footprint”, which helps to identify and to classify the material. For example, 
healthy plants absorb, especially in the Red and Blue part of the visible light spectrum, which is 
partially related to the chlorophyll for photosynthesis. At the same time, they reflect much more in 
the Near-Infrared. Stressed plants change their spectral reflectance signature, and they reflect more 
in the visual range and less in the Near-Infrared, and the slope in the transition from low values in 
the visual to higher values in the Near-Infrared (the so-called Red Edge) becomes less steep. Soils 
typically have a flatter spectrum without a pronounced transition between visual and Near Infrared 
(see figure 1).
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Figure 1: Multispectral cameras capture only some selected wavelength bands within the 
electromagnetic spectrum. Hyperspectral cameras capture a quasi-continuous range of small 
wavelength bands across a part of the spectrum. Beyond 1000 nm, the quantum efficiency of CMOS 
sensors converges quickly to zero and limits the sensible spectrum.

Multispectral and hyperspectral sensing technology is available today and has multiple application 
areas in agriculture:

1.	 Scientific agricultural research, consulting, breeding, and field tests of agrochemicals use 
hyperspectral sensing widely. It allows an analytical assessment of the health state and 
stress factors of crops. Recent research indicates that specific crop diseases come with 
characteristic reflectance spectrums (see, e.g. [7], [9]).

2.	 Multispectral imagery is used today to plan variable rate applications in arable farming [6].

General workflow of multispectral  
image acquisition and analytics
Multispectral sensing starts with imagery acquired by satellites, airplanes, or drones. Many images of 
the cameras are stitched together to create precise geolocated orthomosaics of reflectance values 
for each band, called reflectance maps. In the next step, reflectance maps of different bands are 
combined to an index map. Many specialized indices exist to obtain information regarding specific 
aspects of the mapped area, e.g., LCI, to visualize chlorophyll or NDVI for biomass quantification. 
Depending on the use case, reflectance maps and index maps serve as a base map layer to compute 
zonation maps or for further statistical or machine learning-based analytics
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Figure 2: Workflow from image acquisition to analytics and applications

Timely and good quality data are essential for correct decisions and application maps. Computing 
correct reflectance from drone-based cameras is a complex and challenging task. Bias in the 
reflectance computation can lead to misinterpretation and incorrect treatments, with severe 
consequences. Therefore, sound reflectance values are paramount.

Recently, multispectral cameras with a “sky sensor”, which captures the downwelling irradiance have 
become commercially available. With the correct calibration, such sensors can be used to derive 
reflectance without an empirical calibration procedure for every acquisition. However, this requires 
the accurate processing of the raw data. For the same at-ground reflectance, the captured raw value 
changes with illumination conditions, camera settings, and camera and sky sensor orientation. For 
example, if the auto-exposure in the firmware of the camera decreases the exposure time, the numeric 
value in the raw image will decrease. This is not related to any physical change in the imaged object, 
but rather to a change in the sensing system. Therefore, having an accurate model of the sensor in 
order to back-compute physical properties from measured raw values is essential.

Pix4D is actively involved in the research. We have successfully developed and tested a new method 
to estimate at-ground hemispherical-directional reflectance factors (HDRF) from such cameras in 
both clear sky and overcast sky conditions. The findings were published in a peer-reviewed research 
article in a high-impact journal [1].

Case studies
The following two use cases illustrate the workflow and applications of multispectral images in 
arable farming.

Optimal harvest time for corn
For silage corn, there is an optimal maturity of the plants. The maturity is measured with an index, 
where 30% to 35% is ideal. Below 30%, the corn contains too little starch, while above 35%, higher 
losses during storage are likely. The traditional approach is to sample randomly selected plants in 
the field and estimate their dry substance. However, due to differences in the soil properties, plants 
at places with lower water holding capacity mature faster than at better places.
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Remote sensing, in combination with ground sampling, can solve this problem. In the first step, 
an index map helps to select the plants for probing with a data-driven approach. These specific 
locations in the field are representative of the different similar zones. In the second step, samples 
and an index map are combined to derive the spatially resolved dry substance map (figure 3). This 
approach allows selective harvesting, thereby optimizing the quality of the harvest and quality control 
of the optimal harvest time.

Growth regulator
Especially after a mild winter, growth regulators can help to ensure quality and yield in cereal 
production. Flat laying wheat causes less nitrogen absorption with a negative environmental impact 
and commercially can lead easily to a loss of 200 EUR / ha for a farmer.

Due to spatial differences in soil types, relief, and soil moisture, crops grow differently at different 
places. With a flat rate application of growth regulators, certain areas of a field can be oversupplied 
or undersupplied. Too much growth regulator shortens the roots and can reduce the yield when it is 
dry.

Multispectral sensing can help to apply the right dose of growth regulators. The previous N uptake 
of the plants is computed from an index map. This value is the data basis for the area-specific 
application for growth regulators (figure 4). If the value is high, there is a lot of chlorophyll, i.e. 
biomass. The amount of growth regulator must then be increased.

Long-term tests by Agrarpohl [10] confirm an average increase in the yield of 40 EUR / ha for winter 
wheat leveraging variable applications of growth regulators compared to non-variable applications.

Figure 3: Dry substance map derived from 
multispectral data in order to estimate the best 
possible harvest time.

Figure 4: An NDVI indicating the biomass 
distribution over a field. On the right side, a 
computed zonation map for growth regulator 
applications.

Agrarpohl, Wolfenbüttel [10] provided fig. 3 and 4.
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Outlook
1.	 With improved connectivity, processing power, and reliable communication standards 

in the agricultural industry, we expect a substantial improvement in the user experience 
when dealing with multispectral and hyperspectral sensing, processing, and planning 
software. Within the next ten years, we assume seamless workflows from advanced 
sensing technology to variable-rate sprayers as established standards in crop production 
processes without the need for manual interactions of farmers and field workers. 

2.	 Driven by the need to protect our resources and environment we assume that variable-rate 
fertilization and crop production techniques will replace conventional crop production processes 
with the next generation of machines within the next 15 years (see [8] for quantitative predictions). 

3.	 With the evolution of sensing technology and algorithms, the qualitative planning for 
variable rate applications will evolve into quantitative analytics. It means that farmers 
will not only know that they should apply less or more in certain regions but also exactly 
how much, i.e., algorithms will partially replace the human judgment of the agronomist. 

4.	 The fusion of data from multiple sensors, phenological databases, weather, and soil 
information, and advanced analytics with the help of machine learning, can allow an 
automatic spatially resolved detection of crop diseases. In combination with databases 
for agrochemicals agents, it could, for example, suggest the correct application and the 
respective doses to cure the detected disease.

About Pix4D
Pix4D is the world-wide market leader in professional drone mapping and photogrammetric software 
solutions. Based in Switzerland, with offices in San Francisco, Denver, Shanghai, Berlin, Madrid, 
Tokyo, the company’s end-to-end solutions empower individuals to capture their maps of changing 
environments instantly. Images taken by hand, by drone or by plane are automatically converted into 
georeferenced 2D mosaics, index and zonation maps, 3D surface models, and point clouds.

Pix4D’s site in Berlin develops vertical applications for agriculture and public safety. Pix4D continuously 
enhances its industry-leading position in image processing, computer vision and photogrammetry, 
radiometry, and machine learning (see [1–5]).

Being part of Parrot Group Holdings, Pix4D can cooperate closely and leverage unique solutions 
from both senseFly and MicaSense. senseFly is the leader in the fixed-wing drone market, while 
MicaSense is a leading manufacturer of high-resolution multispectral cameras. With hardware and 
software development closely aligned, the Parrot group of companies provides world-leading drone-
based sensing technology with powerful analytics specifically developed for the global agriculture 
market.
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