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Abstract

This paper describes a PDE-based method for dense
depth extraction from multiple wide-baseline images. Em-
phasis lies on the usage of only a small amount of images.
The integration of these multiple wide-baseline views is
guided by the relative confidence that the system has in the
matching to different views. This weighting is fine-grained
in that it is determined for every pixel at every iteration.
Reliable information spreads fast at the expense of less re-
liable data, both in terms of spatial communications within
a view and in terms of information exchange between the
views. Changes in intensity between images can be handled
in a similar fine grained fashion.

1. Introduction

During the last few years more and more user-friendly
solutions for 3D modelling have become available. Tech-
niques have been developed [8] to reconstruct scenes in 3D
from video or images as the only input. The strength of
these so-called shape-from-video techniques lies in the flex-
ibility of the recording, the wide variety of scenes that can
be reconstructed and the ease of texture extraction.

Typical shape-from-video systems require large overlap
between subsequent frames. This requirement is usually
fulfilled for video sequences. Often, however, one would
like to reconstruct from a small number of still images,
taken from very different viewpoints. Indeed it might not
always be possible to record video of the object of interest,
e.g. due to obstacles or time pressure. Furthermore there is
a wide class of applications where the images are not taken
for thepurposeof 3D modelling, but a reconstruction is de-
sirable afterwards.

Recently, local, viewpoint invariant features [18, 3, 11,
12], have made wide-baseline matching possible, and hence
the viewpoints can be further apart. However, these tech-
niques yield only a sparse set of matching features. This pa-
per focuses on the problem of dense matching under wide-

Figure 1. 3 wide-baseline views of the ‘bookshelf ’
scene. Top: images 1 and 2 with matching invariant
regions; bottom: the same for images 1 and 3.

baseline conditions.
Wide-baseline matching tallies with the development of

digital cameras. The low resolution cameras which were
available in the past required the use of many images
(video) to build accurate 3D models. The redundancy com-
ing from their overlap also helped to overcome noise. Digi-
tal cameras today, on the other hand, have resolutions in the
order of thousands of pixels and the images are less noisy.
Wide-baseline reconstruction based on high-resolution stills
may soon outperform small baseline, video-based recon-
struction with its low-res input.

This said, stereo matching has been studied mainly in
the context of small baseline stereo and for almost fron-
toparallel planes. Many such algorithms are available to-
day, based on a diversity of concepts (e.g. minimal path
search [19], graph cuts [9, 4, 22], etc.). Recently a com-
parative study has been published by Scharsteinet al. [14].
There are also several approaches that combine many views,
often taken from all around the object. Examples are voxel
carving [10], photo hulls [15], and level sets [6]. They use



Figure 2. Textured and untextured views of the re-
construction from the scene in fig. 1. Shown is the
reconstruction from the inverse depth mapdi.

a large amount of images integrated into a single scheme.
Several of these approaches use a discretized volume and
restrict possible depth values (3D points) to a predefined ac-
curacy. This is not the case for pixel-based PDE approaches
[1, 17, 16], which do not need 3D discretization and com-
pute depth (disparity) with higher (machine) precision for
every pixel. For large images with fine details, it is question-
able whether volume based algorithms can combine reason-
able speed and memory requirements with high accuracy.

Current image-based PDE solutions for 3D reconstruc-
tion have been proposed for stereo [1] and multi-view stereo
[17]. They are faster than earlier PDE-based methods, due
to efficient implicit discretization [2]. So far, these algo-
rithms have only been evaluated for small baseline stereo.
In the case of wide-baseline stereo, however, the following
two constraints that exist in many stereo algorithms should
be reduced:
-the uniqueness constraint(as in [9, 4]), as several pixels in
one image should be allowed to correspond to a single pixel
in another, e.g. due to large scale changes, and
-the ordering constraintalong epipolar lines as in [4, 9, 19].

A wide-baseline system should also be able to cope with
large occlusions and depth discontinuities, as well as with
intensity changes in the images. All these effects will be
more outspoken under wide-baseline conditions.

The proposed algorithm offers extensions to our earlier
work [17] in that it includes a smoothness term based on a
newly defined diffusion tensor. It is no longer restricted to
precalibrated cameras and a diffusion process with variable
time steps (‘inhomogeneous time’) guides the convergence.
Our system is also simplified in the sense that the number
of diffusion equations is reduced. We also extended the ap-
proach to vector valued images (color). The algorithm is
also akin to the work of Alvarezet al.[1], but we do not use
their assumption of small occlusions and handle more than
two images.

The paper is organized as follows. Section 2 describes
the built-in calibration step and introduces the depth pa-
rameterization of corresponding points as a key to integrate
multiple stereo views. Section 3 discusses the algorithm us-
ing N stereo views in a single scheme to extract depth, light
scaling between matching points, and their level of consis-
tency. In section 4 we introduce the inhomogeneous time
diffusion and the discretization of the PDE system. Sec-
tion 5 shows experiments on real images and section 6 con-
cludes the paper.

2. Preprocessing and parameterization

Starting point of the proposed wide-baseline system is
the matching of affine invariant regions across all images.
This replaces the typical matching of (Harris) corners in tra-
ditional, uncalibrated structure-from-motion. Here we use
the affine invariant region implementation in [18] and use
the method of [7] to further boost the number of multi-view
matches. Fig. 1 shows the output of the affine invariant re-
gion matching for three wide-baseline images of a book-
shelf.

Exploiting these matches, a self-calibration procedure
similar to shape-from-video methods is set up, followed by
a bundle adjustment, in order to reduce errors in the camera
parameters and the 3D structure of the feature point cloud.
Then follows the actual search for dense correspondences,
just as in the case of video, but now for wide-baseline input.
This search exploits both the knowledge of the camera pa-
rameters and the discrete set of matching features that both
are available at that point.

The integration of multiple views is simplified through
the use of a unified, physically relevant parameterization of
corresponding points. We use inverse depth. ConsiderN
imagesIi, i = 1..N . We choose the center of projection
of the first camera as the Euclidean coordinate center. A
3D point denoted byX = (X, Y, Z, 1)T is projected to the



Figure 3. Top: Four images used in the wide-baseline experiment. Bottom: depth maps for these images (dark pixels
indicate low consistency regions).

coordinatesxi = (xi, yi, 1)T in imageIi through:

λixi = Ki[R
T
i | − R

T
i ti]X (1)

whereKi is the usual camera calibration matrix,Ri is the
3 × 3 rotation matrix specifying the relative orientation of
the camera andti = (tx, ty, tz)

T is the translation vector
between the first and the ith camera (R1 = 1, t1 = 0).

From eq. (1) the epipolar lines between allN views can
be derived. It follows for corresponding image pointsxi

andxj in the ith and jth image and for acoordinate system
that is attached to the ith camera (Ri = 1 , ti = 0) that:

λj

Zi

xj = KjR
T
j K

−1

i xi +
1

Zi

Kj t̃j (2)

with t̃j = −R
T
j tj . Note thatZi is proportional toλi. The

stereo correspondence is divided into a component that de-
pends on the rotation and pixel coordinate (according to the
homographyHij = KjR

T
j K

−1

i ) and a depth dependent
part that scales with the amount of translation between the
cameras. The corresponding point in the jth image for a
point~xi

1 in the ith image will be written as [17]:

~l(~xi, di) =

(

Hij [1]xi

Hij [2]xi

)

+ di

(

Kj[1]̃tj

Kj[2]̃tj

)

Hij [3]xi + dit̃zj

(3)

with the parameterdi = 1

Zi
, i.e. adepth related parameter.

Hij [k] is the 3-vector for the kth row of the homography
Hij and similarly forKj [k].

1In the following the vector sign describes non-homogeneouspixel co-
ordinates~xi = (xi, yi)

3. Integration of multiple views

Given N imagesi = 1..N , that have been calibrated
as described, our approach is based on the minimization of
the following cost functionals for the different cameras, and
written here in terms of the ith camera:

Ei[di, κij ] =

∫ N
∑

j 6=i

cij |κijIi(~x) − Ij(~l(~x, di))|
2d~x

+ λ1

∫

(∇di)
T D(∇Ci)∇did~x

+ λ2

∫ N
∑

j 6=i

|∇κij |
2d~x. (4)

In fact the minimum of this energy for all cameras (usually
not more than 10) will be estimated by systems of coupled
PDE’s, described in the sequel. This functional will now be
explained term by term.

The first term quantifies the similarity of the intensity
patterns in the matching points. Note that it replaces the
traditional brightness constancy assumption by a local in-
tensity scalingκij(~x). This factorκ is introduced to account
for the changes in the lighting conditions, which tend to be
more severe under wide-baseline conditions. Note that the
norm in this term can be defined as an appropriate distance
for vector valued functions, like e.g. a distance in a color
space or a distance between outputs of a filter bank.
Typically a pixel~x in the ith image can obtain a depth value
di(~x) through matching withall remainingN − 1 views.
This is true for all pixels that do not fall victim to occlu-
sions. The local weightcij(~x) takes care of such situations.
This value will be close to one if the match has homed in on
the correct solution and close to zero if no consistent match



Figure 4. Views of the untextured 3D reconstruction from the depth mapd1 of the left image in fig. 3.

has been found (as in the case of occlusion). Howcij is cal-
culated is explained in more detail shortly.
Since we do not know the value ofIj(~l(~x, di)) in eq. 4,
we split the inverse depth valuedi(~x) into a currentdi0(~x)
and a residualdir

(~x) estimate. This is similar to the bi-
local strategy used by Proesmanset al. [13]. These two
estimates sum to the solutiondi in each iteration. Taylor
expansion arounddir

and neglectingO(d2
ir

) and the higher
order terms gives for this term in eq. 4:

Ij(~l(~x, di0 + dir
)) = Ij(~l(~x, di0)) +

∂Ij

∂~x
dir

∂Ij

∂~x
=

(

∂Ij(~l(~x, di0))

∂x

t1h3 − t3h1

(h3 + dot3)2

+
∂Ij(~l(~x, di0 ))

∂y

t2h3 − t3h2

(h3 + dot3)2

)

,

with

h1 = Hij [1]xi, h2 = Hij [2]xi, h3 = Hij [3]xi

k1 = Kj[1]̃tj , k2 = Kj [2]̃tj .

The second term in eq. (4) regularizes the inverse depths
di. It forces the solutions to be smooth, while preserving

depth discontinuities through anisotropic diffusion. Various
anisotropic diffusion operators have been considered in the
literature, mostly in the context of optical flow, disparity
[13, 5, 2, 21] computation, and image enhancement [20].
We tested four operators. Following Weickertet al.’s tax-
onomy [21], the first is a ‘nonlinear, anisotropic flow (con-
sistency) driven diffusion operator’, the second a ‘linear,
anisotropic image driven operator’ (equivalent to [1]) and
the third a ‘nonlinear, anisotropic flow driven diffusion op-
erator’. The 4th is the one proposed by Proesmanset al.
[13]. All yield similar, satisfactory results and further stud-
ies are needed to evaluate the operators in detail. The im-
plementations in this paper are based on the first, with as
diffusion tensor:

D(∇Ci) =
1

|∇Ci|2 + 2ν2

{[

∂Ci

∂y

−∂Ci

∂x

][

∂Ci

∂y

−∂Ci

∂x

]T

+ ν2
1

}

.

This tensor stops diffusion at pixels for which no convincing
match has been found in any of the other images. This sit-
uation is signalled by systematically low ‘consistencies’of
the current matches with the other views. Before introduc-
ing this consistency concept, it has to be mentioned that cor-
respondence search always occurs in two directions in our



Figure 5. Evolution of a part of the 3D mesh for the left image of the scene in fig: 3. Top: lowest scale, left four initial
seed points, they stay more or less fixed during diffusion as described in the text (right images). Bottom: the evolution
when going to still finer scales.

overall scheme. If currently camerai is looking for matches
in cameraj, the reverse will happen when cameraj is be-
ing considered during the same, global iteration. In terms
of camerai the first search is calledforward matching, the
secondbackward matching. Ideally, matches in imagesi
andj point at eachother, i.e. the displacement vectors from
one to the other and v.v. should sum to zero. We put this in
more formal terms now. Defining~p = ~lij(~x, di) ∈ Ij as the
corresponding point to pixel~x ∈ Ii and its backward match
~q = ~lji(~p, dj) ∈ Ii, the confidencecij is a function of the
forward-backward error|~q−~x|. The ‘consistency’cij(~x) at
~x in imagei with its aledged match in imagej is computed
as: cij = 1/

(

1 + |~q − ~x|/k
)

. Ci – the overall consistency
– is the maximum of all consistencies from imagei to the
others, i.e.Ci = max(cij)∀j 6= i. Rather than letting dif-
fusion be driven by all intensity edges, as done by Alvarez
et al. [2], our scheme is less indiscriminate and targets its
caution more specifically towards regions where consistent
and inconsistent matches come close.

Finally, the third term forces the intensity scaling to vary
smoothly across the image.

To minimize the cost functional eq.(4) we rather solve
the corresponding gradient descent equations for each cam-
era:

∂tdi = λ1div(D(∇Ci)∇di) (5)

−

N
∑

j 6=i

cij∂Iσ
j

∂~x

(

κijI
σ
i − Iσ

j +
∂Iσ

j

∂~x
(di − di0 )

)

∂tκij = λ2∇
2κij

− cijI
σ
i

(

κijI
σ
i − Iσ

j +
∂Iσ

j

∂~x
(di − di0 )

)

.

The superscriptσ indicates the Gauss convolved version
of the symbol. Indeed, the scheme is embedded in a
multi-scale procedure to avoid convergence into local min-
ima [17]. This set of coupled diffusion equations is solved
in turn for each imagei (first equation) and each image pair
i, j (second equation). Hence, we have a single eq. for the
depth parameter, butN − 1 eqs. for the intensity factorsκ.
As the eqs. are solved in turn for each camera, this yields
N2 eqs. for a single, global iteration in case one wants to
deal with changing intensities, but onlyN equations if one
adheres to the brightness constancy assumption. This pre-
liminary strategy forκ extraction quickly becomes expen-
sive and more efficient, transitivity exploiting schemes can
be devised.

After each iteration the confidence valuescij are updated
according to the forward-backward mechanism similar to
Proesmanset al. [13, 17]. Note that we don’t regularize the
cij as Proesmans does.

4. Discretization and initialization

Starting point for the diffusion process defined by eq. (5)
is an initial value. This is zero (di(~x) = 0) for most pix-
els except for those that have been used in the calibration
procedure and remained valid also after self-calibration and
bundle adjustment. Using this information is especially
useful when dealing with wide-baselines and even more if
the scene contains ordering changes along epipolar lines.



Figure 6. Intensity scaling experiment: from left to right (a)-(f) Ineach row: original image(a); inverse depth map(b);
(c,d) the two images(a) from the other rows warped to the image(a) in the row taking into account their depth maps and
the intensity scalingsκij ; the intensity scalingsκij (e,f) that accounts for the light change from the two images(a) of
the other rows to the image(a) in the row (κij maps).

Hence, matching invariant regions provide sparse, initial
depth values. These values have themselves confidence val-
ues attached, that are related to the residual of the bundle.
We here introduce a novel framework to deal with varying
confidences in a diffusion-like process. Without this modi-
fication the very sparse set of consistent depth values would
be pulled away by the majority of uninitialized depth values
to fulfill the smoothness assumption of the underlying dif-
fusion process. To prevent this we use an inhomogeneous
time diffusion process. Clocks will not run any more with
equal speeds throughout space as it is for a usual diffusion
process. Different pixels diffuse at a different time scale,
that is related to the pixel confidence. High confidence pix-
els diffuse much slower than low confidence pixels. After
implicit discretization of eq. 5 this inhomogeneous time dif-
fusion is realized by replacing the usually constant time step
sizeτ by the local step sizeτ(~x). We get for the first equa-
tion in eq. 5:

dt+1

i − dt
i

τ(~x)
= div(D(∇Ci)∇dt+1

i ) (6)

− λ
N
∑

j 6=i

cij∂Iσ
j

∂~x

(

κijI
σ
i − Iσ

j +
∂Iσ

j

∂~x
(dt+1

i − dt
i)

)

.

Figure 5 shows the diffusion process over time for experi-
ment 2 (see section 5) on fig. (3). In the top row four ini-
tialization points of a part of the first image are shown (left)
for the computation at the lowest scale. During iterations
these points remain almost fixed due to their slower time
scale. Other pixels will be attracted much faster to these
points (top right images). At the end (bottom row left to
right) initial depth values get also consistent with the sur-
rounding depth’s and with the energy 4 - diffusion reaches
the solution.

5. Results for real images

We tested the proposed algorithms on real data.
• Experiment 1 (strong wide-baseline): The three book-

shelf images of fig. 1 are the input. This figure also shows



Figure 7. Views of the 3D untextured (left, right bot-
tom) and textured (right top) reconstruction from ex-
periment 3 top left image in fig. 6

the extracted affine invariant regions. The 3D reconstruc-
tions computed from the depth map of each of the three
images are shown in fig. 2 In this experiment we did not use
the intensity scale mapsκij as a variable (i.e.κij = 1 ). The
image size is 640×480 pixels and the number of initial 3D
points that passed the calibration procedure was 74, 65, and
73, resp., for the three images. We applied the minimization
based on the Euclidean distance in RGB color space.

• Experiment 2 (strong scale changes, large image size):
Fig. 3 shows the four images with the inverse depth maps
di for each image underneath. Dark pixels in these depth
maps indicate regions of low overall consistencyCi. There
no consistent match could be established in any of the other
images. The 3D reconstruction of the left image of fig. 3
is shown in fig. 4. We used 1536×1024 gray value images
withoutκ (intensity scale) updating. The number of initial
depth values was 33, 30, 17, and 14, respectively for the
images from left to right in fig. 3.

• Experiment 3 (intensity scaling). The images in fig. 6
(left) have been taken at three different days. A clear change
in lighting conditions is visible. The inverse depth maps
are shown next to the original images. Then follow the
two texture mapped,κ-corrected views of the other camera-
centered reconstructions seen from the viewpoint of the ini-
tial camera. Ideally, these images should be very similar
for the overlapping part, which can be seen to be the case.
This shows the correctness of theκ maps seen in the right
two images. Gray value images of size 720×576 have been
used with 64, 54, and 64 initial depth values, resp. Fig. 7
shows the reconstruction from the first image’s depth map
d1.

• Experiment 4 (few, high-res stills). This experiment
shows the capability of the algorithm to get good 3D from

a small amount of images. Three still 1536×1024 images
in a rather small baseline situation have been used. These
are the two left images of fig. 3 together with a third one not
shown. The result can be seen in fig. 8.

6. Summary and conclusions

We have proposed a multi-view wide-baseline stereo
system for the reconstruction of precise 3D models. From
our wide-baseline stereo pipeline, - affine invariant feature
matching - selfcalibration - bundle adjustment - dense re-
construction, this paper has focused on the dense recon-
struction. Armed with a very sparse set of initial depth es-
timates we developed an efficient algorithm to propagate
these by an inhomogeneous time diffusion process, that is
guided by a properly weighted matching energy that takes
into account the matching to all views. The algorithm can
deal with occlusions, light changes, ordering changes along
epipolar lines and extensive changes in scale. Good qual-
ity reconstructions can be obtained from a very small set
of images. The method can handle large image sizes due
to its comparatively small memory usage. The computa-
tion time is reasonable, e.g. 15 min. in experiment 2 using
four 1536x1024 images (on a Athlon 2200 based computer),
incl. the triangulation of all four images.
Acknowledgement: The authors gratefully acknowledge
support by EU IST project ‘CogViSys’. Thanks to Jiri
Matas for providing the bookshelf images.
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