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ABSTRACT:

Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site
monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more
for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to
extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of
the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the
Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter
model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple
datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid
flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter
camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points
when applying the new rolling shutter camera model for flights at higher speed (8 m/s). Competitive accuracies can be obtained by
using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of
the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

1. INTRODUCTION

There is an increasing interest in using small consumer drones
for photogrammetric applications including mapping and three-
dimensional (3D) reconstruction of small to medium-sized areas,
such as quarries, construction or cultural heritage sites, agricul-
ture, and the mapping of city districts. The main advantages of
consumer drones are low cost, good portability, ease of use, and
high flexibility. At the same time, they are still capable of provid-
ing results with competitive accuracy. Fig. 1 shows an example
of a small-area 3D reconstruction using a consumer drone.

These small drones are equipped with camera sensors that de-
liver images with a quality comparable to state of the art compact
cameras. As their principal application is aerial cinematography,
however, they typically are not equipped with a global shutter
but rely instead on an electronic rolling shutter readout of their
complementary metal-oxide-semiconductor (CMOS) sensor. In
a rolling shutter readout, the sensor is exposed and read line-by-
line, instead of the entire image being exposed at once. This can
lead to additional distortions when imaging fast-moving objects
or when imaging using a fast-moving or vibrating camera.

In order to map large areas efficiently, mapping drones need to fly
as fast as possible – typically up to 10 m/s at altitudes of 50 m
above ground. At such speeds and without appropriate model-
ing, distortions due to the rolling shutter limit the accuracy of the
photogrammetric reconstruction, as we show in this paper (Sec-
tion 5.).

A considerable body of research in the photogrammetry and com-
puter vision community has focused on modeling the rolling shut-
ter for various purposes. For instance, it was shown that the
rolling shutter effect can be leveraged in order to simultaneously
estimate the position and velocity of moving objects (Ait-Aider
et al., 2006, Magerand and Bartoli, 2010). Substantial attention
has been dedicated to compensating for rolling shutter artifacts
in videos. This includes various approximations for modeling

the effect of the camera motion on the image by means of affine
transforms (Chun et al., 2008, Baker et al., 2010), a global motion
model (Liang et al., 2008), a mixture of homographies (Grund-
mann et al., 2012), and modeling the camera motion as a pure
rotation with constant angular velocity (Hedborg et al., 2011).
Most of these approaches do not explicitly model the camera mo-
tion and are thus not appropriate for precise structure from mo-
tion reconstructions where the camera is known to move at high
speed.

Rolling shutter modeling in photogrammetry and structure from
motion applications typically presumes a constant translational
and rotational velocity during the exposure of each video frame
or still image. For instance, (Klein and Murray, 2009) estimate
velocities for each keyframe from neighboring video frames and
precompensate the interest point locations. These are optimized
along with the velocities in a bundle adjustment step, which also
optimizes the velocities and thus has six additional degrees of
freedom per camera. However, if all the frames in a video are
used in a reconstruction, then only six additional motion parame-

Figure 1: Screenshot of the Pix4Dmapper reconstruction of our
test site for a dataset recorded with a DJI Inspire 1.



Figure 2: Evaluated drones: DJI Inspire 1 (top-left), DJI Phantom
2 Vision+ (top-right), 3DR Solo with GoPro HERO4 (bottom-
left) and senseFly eBee (bottom-right, used as a reference with a
global shutter camera).

ters are required for the entire video (Hedborg et al., 2012), when
linearly interpolating the camera pose between frames. In other
studies, information from inertial measurement units (IMUs) were
applied to infer the motion during exposure (Li et al., 2013),
an approach which has also been proposed for photogrammetry
(Colomina et al., 2014). As these descriptions model the cam-
era velocity during exposure, the additional information can si-
multaneously be used to estimate motion blur in order to obtain
more consistent feature extraction and matching (Meilland et al.,
2013). More recently, a minimal solver for retrieving a linear ap-
proximation of the rotation and translation velocities during ex-
posure along with the camera pose has been proposed (Albl et al.,
2015).

In the following sections, we show that for mapping applications
with small unmanned aerial vehicles (UAVs) using a controlled
flight plan (see Fig. 3), a rolling shutter model describing the
drone translation velocity during the exposure of each frame is
sufficient to compensate for the motion-induced rolling shutter
artifacts and preserve mapping accuracy even at high speed. To
this purpose we will evaluate the accuracy of reconstruction using
a set of consumer UAVs (as shown in Fig. 2) for the acquisition
of images which are processed with and without a rolling shutter
model.

Section 2. gives more details about the different shutter technolo-
gies found in contemporary cameras. Section 3. describes the
rolling shutter model that is used for this paper. Our experimen-
tal setup is outlined in Section 4. and evaluated in Section 5.

2. GLOBAL AND ROLLING SHUTTERS

A great variety of combinations of mechanical and electronic
global and rolling shutters can be found in today’s consumer and
professional cameras. The most common ones are:

• mechanical rolling shutters in most interchangeable lens dig-
ital single lens reflex (DSLR) systems,

• mechanical global shutters in most consumer compact cam-
eras with non-removable lenses and many photogrammetry
cameras,

• electronic global shutters in older DSLRs with charge cou-
pled device (CCD) sensors, as well as in cameras with CMOS-
type sensors in some specialized applications such as high-
speed cameras,

Figure 3: Mission planning in Pix4Dcapture, depicted here for
the Inspire 1. The App controls taking the pictures, yielding very
similar datasets for the different drones. The drone will follow
the path represented by the white line in the green selection area.
We used the "high overlap" setting of Pix4Dcapture.

• electronic rolling shutters for still imaging in compact con-
sumer products such as smartphones, very compact action
cameras, consumer UAVs; this is also the capture mode used
for video capture in all DSLRs and consumer compact cam-
eras.

Mechanical global shutters are “central shutters” that are located
inside the lens. Central shutters are found in consumer cam-
eras with non-removable lenses (Canon Ixus S110, Fuji X100
and many more) as well as in photogrammetry camera systems
(such as the Leica RC30, Hasselblad A5D). Central shutters are
diaphragms consisting of between six and twelve blades. The
maximum shutter speed may depend on the aperture setting, but
is typically 1/1000 s or slower.

Mechanical rolling shutters, on the other hand, are found in all
common DSLR camera systems. They consist of two shutter cur-
tains located just in front of the sensor – a first curtain that is
opened to start the exposure, followed by a second curtain that
ends it. This system is very attractive for interchangeable-lens
camera systems – only the camera needs a shutter, not each lens,
and the shutter speeds can be much shorter (as low as 1/8000 s
for many cameras). At slow shutter speeds, the first curtain is
lowered and the entire sensor is illuminated for most of the ex-
posure time. At very fast shutter speeds, however, both shutter
curtains are moving simultaneously, exposing only a small frac-
tion of the image at any time. The rolling-shutter readout time
for these systems is the time needed for one shutter curtain to
pass over the entire image – it is about half the flash synchroniza-
tion time specified by the camera manufacturer (not counting any
special high-speed flash modes). For a DSLR, this time is on the
order of 2 ms and thus more than an order of magnitude shorter
than the readout time of most electronic rolling shutters.

Electronic global shutters have in the past mostly been imple-
mented in cameras with CCD-based sensors. In interline transfer
CCDs, the charge accumulated in each pixel during exposure is
transferred into a vertical charge shift register – the CCD – that
is located right next to each pixel column (Nakamura, 2005, Fig.
4.18). This transfer can happen simultaneously over the entire
sensor. The charges are then transferred vertically, row by row,
into a horizontal CCD located at the bottom of the sensor. From
there, the charge is shifted out horizontally to the charge detection
circuit which converts the charges into corresponding voltages
that are then digitized. As long as both the horizontal and the ver-
tical CCD registers are appropriately light-shielded, such CCDs
provide an electronic global shutter without additional complex-
ity. In consumer electronic devices, CCDs are mostly found in
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Figure 4: Rolling shutter readout scheme. The sensor is reset line
by line at constant speed. One line is read simultaneously. After
the exposure time texp, the sensor starts the read-out line by line.
At time t = 0 the first row of the sensor is reset. It is read out at
time t = texp. Consecutive lines are reset and read out one after
the other. The sensor readout is finished after the rolling shutter
readout time τ .

older digital cameras (Nikon D70 and D200, Olympus E1) or in
cameras dedicated to still imaging such as the Leica M9. In most
of these systems, the option of using a global electronic shutter
is, if at all, only used at very short shutter speeds beyond the limit
of the mechanical shutter.

Over the last few years, CCDs have been replaced more and more
by CMOS-type image sensors in most consumer electronics ap-
plications, including cell phones, compact cameras as well as
DSLRs. CMOS sensors had been catching up with CCDs since
the advent of active-pixel CMOS sensors in the early 1990s (Fos-
sum, 1993), as step by step they overcame their initial problems
with dark-current and other types of noise. In CMOS sensors,
the photodiode converting incident light into charge is equivalent
to the one found in a CCD sensor, but the charge is converted
into a current and amplified directly by three or four transistors
located in each pixel. The pixel values can then be read out
using a flexible matrix addressing scheme that is implemented
as transistor logic, as opposed to the much less flexible CCD
charge shifting registers. This allows for fast readout of parts
of the sensor to create low-resolution high-framerate videos and
live previews, easier pixel-binning electronics, and also enables
the camera to efficiently remeasure and adjust exposure, white-
balance and autofocus by performing additional reads of a few
pixels in between frames (Nakamura, 2005, Sec. 5.1.3). Addi-
tional advantages compared to CCD sensors include up to an or-
der of magnitude lower power consumption (CCDs need 15 V
to 20 V to realize buried-channel charge transfer), and the use
of standard CMOS fabrication processes leading to lower fabri-
cation costs and enabling the integration of on-chip processing
electronics, starting with (but not limited to) the analog-digital
conversion. However, CCDs are still the first choice for many
scientific applications, where low noise, uniform response and
high dynamic range are the primary requirements – the trade-offs
involved in the sensor choice for a specific application are dis-
cussed in (Litwiller, 2001).

Unlike CCDs, standard CMOS image sensors do not store the
charge independently of the photodiode. In order to avoid using
the costly, large and error-prone mechanical shutter in consumer
electronics such as mobile phones, action cameras like the Go-
Pro HERO, and many consumer drones, a rolling shutter readout
scheme is widely used with CMOS sensors. This purely elec-
tronic shutter is especially important for video capture, as me-
chanical diaphragm shutters only can support a limited number
of actuations. In a rolling shutter readout, the sensor is reset and
read out line-by-line (Nakamura, 2005, Fig. 5.6). The readout

time for each frame is constant and independent of the exposure
parameters, whereas the exposure time is set by the delay be-
tween reset and readout of each line as shown in Fig. 4. In most
sensors, one line is read out and processed simultaneously. The
voltages in the active pixels are transferred via column-parallel
programmable gain amplifiers (PGAs), digitized in analogue dig-
ital converters (ADC), and the results stored in a line buffer. This
parallel approach has the advantage of high speed and low power
consumption due to low sampling rates. For most consumer cam-
eras, the rolling shutter frame readout takes on the order of 30 ms
to 40 ms, which is the longest readout time that still enables
capturing videos at 30 or 25 frames per second, respectively.
This relatively slow rolling shutter readout can lead to artifacts
when capturing fast-moving objects or when recording images
and videos from moving cameras mounted on UAVs.

Electronic global shutters have also been implemented for CMOS
type sensors, but they are much less widely used, due to the need
for more complex circuitry in each pixel. Thus CMOS-type elec-
tronic global shutter sensors are currently manufactured only with
moderate pixel counts and densities, mostly for applications in
cameras with extremely high frame rates.

3. PHOTOGRAMMETRIC ROLLING SHUTTER
MODEL

For any frame camera we can express the projection of a 3D
world point X by the internal and external camera parameters.
The set of internal parameters are assumed to be constant for all
images of the project. They are modeling the projection of a per-
spective or a fisheye lens with a mathematical description. The
external parameters are different for each image and describe the
image position and orientation. A 3D point X = (X,Y, Z, 1)
is projected into an image at a homogeneous pixel location x =
(λx, λy, λz) for a global shutter model by

x = π [R | −Rc ]X, (1)

where the lens is described by its internal parameters π and the
position and orientation of the camera is given by the rotation
matrix R and camera center c. The internal parameters of the
camera model are described in (Strecha et al., 2015).

In the case of a rolling shutter model, the camera performs an
unknown general movement during the readout of the sensor. To
account for this motion, the projection equation can be expressed
using a time-dependent position c(t) and orientation R(t) of the
camera

x = π [R(t) | −R(t)c(t) ]X (2)

At time t = 0 the first row of the sensor is processed for readout
and the camera center is at c(0) and oriented according to R(0).
All 3D points X that project onto the first row of the sensor are
modeled using position c(0) and orientationR(0). Until the read-
out of the sensor is finished at time τ the camera has moved to a
new location c(τ) with orientation R(τ).

The general rolling shutter model in equation 2 makes the geo-
metric modeling of a set of images intractable, since now each
camera requires not only 6 external parameters (as in Eq. 1), but
6 parameters for each row of the sensor. This is very similar to a
pushbroom camera model. To convert this general model into a
tractable parametrization, the sensor can be modeled by splitting



Drone Camera Resolution Shutter Sensor Lens Field of Est. readout
[pixels] type view [◦] time [ms]

DJI Phantom 2 Vision+ FC200 4384× 3288 Rolling 1/2.3” CMOS Fisheye 110/80 74
DJI Inspire 1 FC300X 4000× 3000 Rolling 1/2.3” CMOS Perspective 85/70 30
3DR Solo GoPro 4 Black 4000× 3000 Rolling 1/2.3” CMOS Fisheye 125/95 30
senseFly eBee Canon S110 4000× 3000 Global 1/1.7” CMOS Perspective 71/56 -

Table 1: Specifications of the evaluated cameras and their estimated readout time. The field of view denotes the horizontal/vertical field
of view as we measure it. The FC300X has a 20 mm lens and the Canon S110 has a zoom lens set to 24 mm (both in 35 mm format
equivalent). The readout time estimations coming from our model have been confirmed by DJI for the FC200 and FC300X cameras.

it into n equally spaced sectors, each of them corresponding to
one set of cj , Rj . The motion of the camera during readout can
then be modeled by

R(t) = R0 ·∆Rj (3)

for the rotation and by

c(t) = c0 + ∆cj , (4)

for the translation, where ∆Rj is the incremental rotation at sec-
tor j of the sensor, relative to the rotation at the beginning of the
exposure, and ∆cj is the incremental translation.

An even simpler linear model that describes the rolling shutter
effect using only 6 parameters is given by:

R(t) = R0 · λ∆R (5)

for the rotation and by

c(t) = c0 + λ∆c, (6)

for the translation, where λ ∈ [−1, 1] models the time (image
row) and 2 ·∆c and 2 ·∆R is the linear motion during the readout
time τ .

4. EXPERIMENTAL SETUP

4.1 Data acquisition

We evaluated rolling shutter cameras on board three popular con-
sumer drones. As reference, we used a professional mapping
drone with a global shutter compact camera. The drones are de-
picted in Fig. 2 while the properties of their respective cameras
are listed in Table 1.

We acquired datasets above our test site with office buildings
(Fig. 1). On-site, 12 ground control points (GCPs) have been
measured at high precision as shown in Table 2. For each UAV,
we made datasets at different speeds at the same altitude of 70 m
above ground using Pix4Dcapture (depicted in Fig. 3) for flight
planning and control. The on-board measurements of the drone
(e.g. speed and global positioning system (GPS) location) and the
time of image capture were transmitted to the App and saved for
further processing. This gave us access to the drone’s velocity
estimate during the capture of each image.

The reference global shutter dataset was captured with the sense-
Fly eBee. In this case, the altitude was chosen such that the
ground sampling distance (GSD) was similar to that achieved us-
ing the consumer drones. The eBee was controlled using sense-
Fly eMotion.

4.2 Evaluation

The datasets were processed with Pix4Dmapper 2.1 beta. Six
of the 12 GCPs were used in the processing to georeference the
reconstruction, while the remaining 6 were used as verification
points. Because of occlusions (several GCPs are situated on a
parking lot), some datasets only have 5 verification points. The
software calculated the position and orientation of each camera,
the errors of the verification points, and a georeferenced point
cloud. Each dataset was processed with and without the rolling
shutter model. For the processing with the model enabled, the
fitted parameters of the rolling shutter model (namely the lin-
ear translation vector during the exposure) were saved for further
analysis.

GCP Accuracy [cm]
X/Y Z

g1 0.3 0.4
g2 0.2 0.3
g3 0.5 1.2
g4 0.2 0.2
g5 0.1 0.4
g6 0.2 0.3

GCP Accuracy [cm]
X/Y Z

v1 0.3 0.4
v2 0.5 1.2
v3 0.5 1.2
v4 0.2 0.3
v5 0.1 0.3
v6 0.2 0.3

Table 2: Accuracy of the ground control and validations points
used in our experiments. Points g3, v2, v3 are on a building roof
(see Fig. 7 for a map). All other points have increased accuracy
due to an additional tachimetric adjustment.

5. RESULTS

The results are consistent across all evaluated datasets. For rolling
shutter cameras, higher flying speed and slower readout time lead
to a greater improvement from the rolling shutter model. The ref-
erence dataset from the global shutter camera has the same results
with and without using the rolling shutter model.

For the rolling shutter cameras, the motion estimate of the rolling
shutter model as fitted by the bundle block adjustment correlates
well with the flight path and is very close to the motion vector
estimated from on-board drone measurements, showing that the
rolling shutter effect is correctly modeled. Fig. 6 shows the mo-
tion vectors for the Phantom 2 flying at 8 m/s as well as for the
eBee. For the Phantom 2, the reference motion vectors were cal-
culated from the on-board measured drone speed and the esti-
mated rolling shutter readout time (see Tab. 1). For the eBee, the
rolling shutter model results in random vectors with nearly zero
length, because it is a global shutter camera for which the model
is not applicable. For the consumer drones, outliers at the ends of
the flight lines stem from the drone rotating before moving to the
next flight line, as only a linear translation is modeled.

For each camera, we estimated the readout time from the fitted
results of the rolling shutter model by dividing the translation
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Figure 5: Estimated readout time for each image of the Phantom
2 Vision+ at 8 m/s (a) and Inspire 1 at 8 m/s (b) datasets. The
median value for the Phantom 2 is 74 ms (DJI confirmed 73 ms).
The readout time of the Inspire 1 is much faster, with an estimated
value of 30 ms (DJI confirmed 33 ms). Most of the outliers cor-
respond to images taken at the end of a flight line, because the
drone rotates to move to the next line. Results are consistent with
the other datasets, with more noise in the datasets taken at lower
speed, as one would expect.

vector estimated from the rolling shutter model by the on-board
measured drone speed. Results are shown in Fig. 5 and Table 1.
The numbers are consistent between the different datasets of the
same drone at different speeds. Flights at slower speed show
more noise.

An estimation of the displacement of image content during the
rolling shutter readout time τ due to the UAV’s forward velocity
can be obtained by

∆y ≈ vτsy

ϕyh
with ϕy =

Sy

f
(7)

where ∆y is the vertical displacement in pixels, v is the drone ve-
locity in meters per second, sy is the vertical image size in pixels,
ϕy is the vertical camera field of view in radians, h is the flight
height above ground in meters, Sy the vertical sensor size in me-
ters and f the focal length in meters. For a DJI Phantom 2 flying
at 8 m/s and 70 m above ground, the rolling shutter causes a dis-
placement of about 10 pixels. For a DJI Inspire 1, on the other
hand, the displacement is only about 4 pixels, thanks largely to
the much shorter readout time.

Fig. 8 shows the direction and magnitude of the average repro-
jection error in the Phantom 2 Vision+ camera for the dataset
flown at 8 m/s. The left image shows results from the traditional
global shutter camera model, the right one from the rolling shut-
ter camera model. The errors with the rolling shutter model are
much smaller. A systematic error appears only with the tradi-
tional model, but is eliminated with the rolling shutter model,
which confirms that the rolling shutter is correctly modeled.

Table 3 shows the average root mean-square (RMS) error of the
verification points for each dataset. A graphical representation

50 m

a)

50 m

b)

Figure 6: Motion of the drone during the acquisition of the im-
ages as estimated by the rolling shutter model. Each arrow repre-
sents a picture. The length of the arrows is proportional to the
motion of the drone during the readout time and upscaled for
readability. The motions as estimated from the on-board drone
measurements and from the rolling shutter model are displayed
in blue and black respectively. (a) Results for the eBee dataset
with a global shutter camera show very small estimated displace-
ments in random directions. (b) Results for the Phantom 2 Vi-
sion+ dataset at 8 m/s.

of the X-Y components of the errors is shown in Fig. 7. Here
the circle depicts the mean ground sampling distance of 2.85 cm
and the GCPs used for georeferencing the reconstruction are rep-
resented by red crosses. The rolling shutter model significantly
improves the accuracy of the validation points for rolling shut-
ter datasets at medium to high speeds, while the influence at low
speed is smaller. For the Phantom, only the slowest dataset is not
significantly affected by the rolling shutter effect, whereas for the
Inspire 1, only the high speed dataset is visibly influenced. This
is due to the much shorter readout time of the Inspire 1 camera.

For the global shutter camera on board the eBee, the rolling shut-
ter model has no influence on the accuracy. The verification
points located at the center of the grid are more accurate than
the ones close to the border, which can be explained by the fact
that there is a GCP close to them, and that their central position
makes them visible in more images.

The systematic errors introduced by not modeling the rolling shut-
ter effect can be countered by using an increased number of GCPs
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Figure 7: Error of the verification points, both for the reconstruction without (left) and with (right) the rolling shutter model. The red
crosses depict the GCPs. The arrows are centered on the verification points and their lengths and directions show the X-Y error for
each of the datasets listed in Tab. 3. The circle centered on each verification point shows the GSD in the same scale as the arrows. On
the left image, the rectangle shows the contours of the flight path.

Figure 8: Direction and magnitude of the average reprojection error of all automatic tie points for the Phantom 2 Vision+ dataset flown
at 8 m/s. Results are shown both for the standard fisheye camera model (left) and the linear rolling shutter model (right). The length
of the error vectors is magnified for better visibility.



that are densely distributed over the entire mapping area. For our
test site, selecting five GCPs surrounding the area will reduce the
errors within this area to a similar extent as can be obtained by
correctly modeling the rolling shutter. The errors outside the area
surrounded by GCPs can, however, only be reduced by modeling
the rolling shutter effect. Furthermore, constructing such a high
GCP density is both time and work intensive and hence not prac-
tical for most large surveying projects. For example, the large
area dataset of a city district as shown in Fig. 11 covers an area
of half a square kilometer, surrounded by 7 GCPs. In this case,
the error on the checkpoints situated in the interior of the survey
area is also considerably improved when using the rolling shutter
model, as shown in the last rows of Table 3 and Fig. 9.
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Figure 9: RMS error for Phantom, Inspire, eBee and the large
dataset from Table. 3. In gray and dark-blue are the errors for the
classical and rolling shutter model, respectively.
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Figure 10: Approximate estimation of the maximum surface that
can be covered using a single battery charge by the UAVs at dif-
ferent speeds.

Figure 11: Large data set reconstruction using Pix4Dmapper 2.1.
It was created from 1700 images captured in several flights us-
ing a DJI Phantom 2 Vision+. It covers an area of half a square
kilometer with a ground sampling distance of 3.4 cm.

6. CONCLUSIONS

Consumer drones are becoming increasingly useful for photogram-
metric mapping applications. However, care has to be taken when
flying at higher speeds because of the rolling shutter effect. For
the Phantom 2 Vision+, a popular consumer drone often used
for surveying, the results obtained in this paper indicate an ap-
proximate upper bound for the flight speed of 4 m/s to reach re-
sults that are compatible with the well accepted practical accuracy
bound of 1−2 GSD in X/Y and 2−3 GSD in Z direction. For
the Inspire 1, this limit is shifted toward 8 m/s since the readout
time for its sensor is much faster.

This demonstrates that the speed limitation imposed by rolling
shutter cameras represents a practical obstacle towards their use
in photogrammetric mapping when it is not compensated for. It
limits the maximal speed at which the drone can be flown, and
hence the area that can be mapped with the same battery life
(see Fig. 10), constraining the productivity that surveyors can
attain when using UAVs. However, as this study demonstrated,
explicitly modeling the rolling shutter effect of the camera, as
implemented in Pix4Dmapper 2.1, allows this speed limit to be
increased. We have shown that in this case, the accuracy is not
affected by the rolling shutter distortions even if we reach flight
speeds of 8 m/s.

An additional advantage of explicitly modeling the rolling shut-
ter is the ability to estimate the drone speed purely based on the
image content. This adds the future possibility, when photogram-
metry can be applied in real-time, to fuse the estimate of rolling
shutter speed with data from the other sensors to enhance the state
estimation of a UAV.

The results obtained with a global shutter camera, as carried by
the professional senseFly eBee, still outperform the ones based
on a rolling shutter camera, but require substantially more expen-
sive equipment. Nevertheless, our observations show that con-
sumer drones with rolling shutter cameras can attain good perfor-
mance at a lower cost when the rolling shutter effect is correctly
modeled. Hence, having this additional enhancement available
in photogrammetry software such as Pix4Dmapper 2.1 will fur-
ther improve the usability of low-cost and light-weight UAVs for
professional mapping applications.
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Phantom 2 Vision+ RS 0.24 2.6 3.3 6.6
Inspire 1 8 0.28 5 4.2 4.4 10.2
Inspire 1 RS 0.19 2.2 2.5 6.4
Inspire 1 4 0.23 5 2.1 1.8 8.6
Inspire 1 RS 0.20 2.7 2.4 7.4
Inspire 1 1 0.20 5 2.7 1.9 8.3
Inspire 1 RS 0.20 3.2 2.8 7.5
eBee 8–13 0.23 6 1.3 1.5 3.2
eBee RS 0.23 1.1 1.7 3.2

Large area dataset 8 0.16 7 14.9 9.5 88.8
Large area dataset RS 8 0.15 3.1 3.4 16.9

Table 3: Comparison of the camera models with and without rolling shutter (RS) block adjustment for various cameras and flight speeds
recorded at our test site. Of the 12 GCPs available, 6 were used for the calibration and 5-6 were used as validation GCPs (one was
sometimes occluded). The GSD of the datasets is always around 2.85 cm . The RMS error is reported on the validation GCPs. For the
RMS errors, the following color coding was applied: horizontal X and Y axes: green ≤ 2 GSD < orange ≤ 3 GSD < red; vertical Z
axis: green ≤ 3 GSD < orange ≤ 4 GSD < red. The large area dataset is the one shown in Fig. 11
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